lunes, 27 de abril de 2015

Construyendo una topología de red 464XLAT (mecanismo de transicion)

Introducción:
  El siguiente post indica el procedimiento que puedes seguir para tener una topología de red con 464XLAT


Topología:



Que se necesita:
Del lado del cliente:
- Un cliente CLAT, en nuestro ejemplo utilizamos: https://github.com/toreanderson/clatd
- Tayga como NAT64 (http://www.litech.org/tayga/)  En este post puedes conseguir el procedimiento de instalación (más abajo dejo todos los archivos de configuración)


y del lado del servidor:
- Tayga como NAT64 (http://www.litech.org/tayga/)  En este post puedes conseguir el procedimiento de instalación (más abajo dejo todos los archivos de configuración)
- Para nuestro ejemplo un DNS Server pero si tienes otro puedes obviarlo. Es recomendable utilizar DNS64 para facilitar el reconocimiento de red cuando se ejecute el clatd.
- radvd (para hacer los anuncios RA y que el cliente se auto-configure), una vez puedes obviarlo y hacer tus configuraciones manuales


Configuraciones:
Del lado del cliente:
En lineas generales no es necesario configuar nada. El tayga utiliza un archivo de ejemplo construido en el momento y el clatd verifica todo lo necesario. Por favor asegura que el archivo /etc/resolv.conf contenga la línea;

nameserver 2001:13c7:100:f101::1


IMPORTANTE: Del lado del cliente lo unico que hay que hacer es ejecutar el cliente clatd. El procedimiento es el siguiente:
#unzip clatd-master
#cd clatd-master
#./clatd  

Con este último comando el clatd será capaz de reconocer que NO hay direcciones IPv4 en el equipo donde se ejecuta y reconocer como es su conectividad hacia el exterior.

Del lado del servidor (6 pasos):
1) El radvd se configura en el archivo /etc/radvd.conf y debe quedar así:

interface eth0 { 
        AdvSendAdvert on;
        MinRtrAdvInterval 3; 
        MaxRtrAdvInterval 10;
        prefix 2001:13c7:0100:f101::/64 { 
                AdvOnLink on; 
                AdvAutonomous on; 
                AdvRouterAddr on; 
        };
};


2) Tayga: Del lado del servidor si es muy importante realizar una configuración de tayga. Para nuestro ejemplo:

En /usr/local/etc/tayga.conf:
tun-device nat64
ipv4-addr 192.168.64.1
prefix 64:ff9b::/96
dynamic-pool 192.168.64.0/24
data-dir /var/log/tayga
ipv6-addr 2001:13c7:100:f101::1


3) Las interfaces del lado del servidor deben quedar así:
/usr/local/sbin/tayga --mktun
/sbin/ip link set nat64 up
/sbin/ip addr add 10.0.3.15 dev nat64
/sbin/ip addr add 64:ff9b::1 dev nat64
/sbin/ip route add 192.168.64.0/24 dev nat64
/sbin/ip route add 64:ff9b::/96 dev nat64

4) Levantar tayga:
/usr/local/sbin/tayga -d &


5) Hacer NAT de la red IPv4:
/sbin/iptables -t nat -A POSTROUTING -s 192.168.64.0/24 -o eth10 -j MASQUERADE


6) El DNS Server debe quedar con la siguiente directiva dentro de /etc/bind/named.conf.options:

        dns64 64:ff9b::/96 {
          clients {
           any; };
        };  // End of DNS64 Section


Un poco mas de como quedas las interfaces. La salida de ifconfig del lado del servidor:

eth10      Link encap:Ethernet  HWaddr 00:0c:29:06:e9:cc
          inet addr:10.0.3.15  Bcast:10.0.3.255  Mask:255.255.255.0
          inet6 addr: fe80::20c:29ff:fe06:e9cc/64 Scope:Link
          inet6 addr: 2001:13c7:7001:500::21/64 Scope:Global   ---> HACIA WAN
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:42282238 errors:0 dropped:307 overruns:0 frame:0
          TX packets:11377224 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:5706072894 (5.7 GB)  TX bytes:2226397897 (2.2 GB)

eth9      Link encap:Ethernet  HWaddr 00:0c:29:06:e9:d6
          inet addr:10.64.0.1  Bcast:10.64.0.255  Mask:255.255.255.0
          inet6 addr: fe80::20c:29ff:fe06:e9d6/64 Scope:Link
          inet6 addr: 2001:13c7:100:f101::1/64 Scope:Global  --- HACIA LAN
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:652093 errors:0 dropped:72 overruns:0 frame:0
          TX packets:2662969 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:84197892 (84.1 MB)  TX bytes:1461857730 (1.4 GB)

nat64     Link encap:UNSPEC  HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
          inet addr:10.0.3.15 P-t-P:10.0.3.15  Mask:255.255.255.255
          inet6 addr: 64:ff9b::1/128 Scope:Global
          UP POINTOPOINT RUNNING NOARP MULTICAST  MTU:1500  Metric:1
          RX packets:1135938 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1074859 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:500
          RX bytes:939693414 (939.6 MB)  TX bytes:931853538 (931.8 MB)




Explicando todo lo anterior:

1) Supongamos que el cliente quiere acceder una direcciones IPv6.., no pasa nada extraño  :-). El routing es 100% IPv6, no hay NAT, todo normal.

2) En el supuesto que el cliente quiera acceder a una dirección IPv4:

a) El cliente clatd otorgará un socket IPv4 a la aplicación
b) El paquete que construya el cliente será 100% IPv6. Será su dirección IPv6 origen y el destino será 64:ff9b::/96 + 32 bits de la dirección IPv4 destino. Recordemos que no hay IPv4 en el core de la red.
c) El PLAT (Tayga del lado del servidor)  al recibir un paquete con destino 64:ff9b::/96 lo enruta por la interfaz TUN NAT64 (interfaz lógica) donde tayga remueve los primeros 96 bits del destino dejando unicamente los 32 bits menos significativos (la dirección IPv4). Al origen (IPv6) se le hace una mapeo stateless con una direccion IPv4 (del pool en el archivo de configuración (192.168.64.0/24).
d) Cuando el paquete con el origen 192.168.64.0/24 del servidor desee salir del equipo será nateado con iptables al IPv4 que tenga eth10 (/sbin/iptables -t nat -A POSTROUTING -s 192.168.64.0/24 -o eth10 -j MASQUERADE)




Anexo:
a) ping a un destino IPv4 desde el cliente:




b) Clatd ejecutándose:



c) Captura en Wireshark de un ping desde el cliente (IPv6 only) a un destino IPv4:









martes, 17 de febrero de 2015

Solucion a: quagga vtysh " Exiting: failed to connect to any daemons."

Situacion:
  Al ejecutar el comando vtysh en el shell de linux para conectarse a los demonios de quagga (bgpd, ospfd, etc) da el siguiente error "Exiting: failed to connect to any daemons"

alejandro@miserver:~$ vtysh -d bgpd
Exiting: failed to connect to any daemons.

alejandro@miserver:~$ vtysh 
Exiting: failed to connect to any daemons.


Solucion:
  La solución es agregar al usuario con el que ejecutas vtysh al grupo quagga, para ello edita el archivo /etc/group.
  La linea en /etc/group debe quedar algo asi:

quagga:x:1003:alejandro

puedes especificar varios haciendo:

quagga:x:1003:alejandro, john


  Lo anterior es necesario porque la conexión a los demonios de quagga los realiza con UNIX domain socket y no todos los usuarios tienen acceso a dichos sockets.

Otra solución:
  Otra solución puede ser durante la compilación especificar el grupo para la creación de los sockets pasando lo siguiente durante el configure:

./configure --enable-vty-group=group

 


  Suerte, espero haya sido útil,






lunes, 26 de enero de 2015

Tecno-cuento: La triste historia de un ISP sin IPv6

Erase una vez.....
  Erase una vez, en un tiempo no muy lejano, un ISP muy grande que
dominaba las telecomunicaciones de un país, se sentía poderoso y sin
competencia. Cuando alguien necesitaba conectarse a Internet siempre
recurrian a ellos. Tenían una penetración en el mercado envidiable
para todos.

  Sin embargo, este ISP tan grande no había querido implementar nunca
IPv6, pensaba que tenía suficientes direcciones IP para abastecerse, no
percibían indicador alguno que dijera: tengo que tener el nuevo protocolo.

  Durante esos años, otro pequeño ISP si implementó IPv6,
comenzaron a crecer lentamente, se dieron cuenta que el protocolo si
marcaba una diferencia en sus clientes, ganaban usuarios gracias a tener
soporte de dicho protocolo. Su penetración en el mercado crecía,
ganaban más dinero y más respeto. Siendo más grandes le era más
fácil conseguir mejores precios de equipos, de tráfico, de
interconexión. Todo funcionaba muy bien. El ISP pequeño sencillamente
no lo podía creer, algo tan sencillo de implementar como IPv6 le
rendía frutos inimaginables. Sus clientes le decian que tenian crear
VPNs y conferencias contra otras partes del mundo, que sus subsidiarias, clientes y
aliados de negocio en Europa y Asia si tenían IPv6, por ello IPv4 no les
era importante.

 El ISP grande, a pesar de ser tan poderoso comenzó a tener
problemas internos, no eran problemas de facturación o dinero. Eran
quejas del personal de ventas que no podían cerrar las mismas porque
los clientes empezaron a pedir IPv6 y ellos siendo tan grandes e
importantes sencillamente no tenían!!. Clientes corporativos pedían
IPv6, usuarios residenciales solicitaban lo mismo, incluso grandes
licitaciones del estado. Cuando eso empezó a ocurrir el Gerente de
Ventas tuvo quejas hacia los departamentos de Producto, Ingeniería y
Operaciones. Estos últimos se quedaron sin palabras y algunos empleados
fueron removidos por los dueños de las empresas. Al final, a Ventas no
les importaba donde estaba la culpa, sencillamente no podían obtener
nuevos clientes.

 Posteriormente algunos vendedores al percatarse que estaban
perdiendo clientes fueron contratados por el ISP pequeño que estaba
buscando personal, total ahora sí podían pagar a importantes vendedores
porque en realidad ya no eran tan chicos. Lo mismo ocurrió con el jefe
de redes del ISP grande que sabía mucho de IPv6 pero la burocracia no
le había permitido llevar a producción el novedoso protocolo. Luego el
jefe de redes lógicamente trajo a su administrador de servidores de
confianza y su persona de seguridad. El ISP grande no podía creer lo
que estaba pasando.

 Los vendedores contratados por el ISP chico (provenientes del ISP
grande) venían con su enorme cartera de clientes, todos potenciales para
ser instalados. Se avecinaba una estampida de clientes del ISP grande.
Pasaban los meses y el ISP chico ya no solo ofrecía Internet, su Data
Center era mucho más grande, importantes empresas trajeron servidores
nuevos, de cache y mucho más. Ahora ofrecían co-location, hosting,
virtual hosting, voz, video y más.

 Cuando el proveedor grande quiso implementar IPv6, tuvo que hacer las
cosas muy rápidas, les salian mal, varios errores, además
consultores y empresas se aprovecharon de sus problemas y cobraban mucho
más para hacer las tareas con la premura que solicitaban. Aumentó el
downtime de red, las llamadas al call center y la prestigiosa reputación se venía
abajo.

 Como es de esperar, al final de la historia todos en el cuento:
clientes y proveedores terminaron implementando IPv6, unos más felices que otros
pero todos con IPv6 en sus redes

  Espero lo hayan disfrutado, y Colorín Colorado este cuento se ha acabado

Abrazos a todos,

Alejandro,


Get ready for Black Friday deals in South Africa with bidorbuy. We at bidorbuy are as excited as you are! We are hard at work to find the best deals at the best price to bring you a whole week of awesome Black Friday deals!

martes, 23 de diciembre de 2014

Retrospectiva: Acceso IPv6 en la region Latinoamerica y Caribe (LAC)

Buenas tardes,

 Este año deseo enviar un correo un poco diferente a los anteriores, ¿Por qué?. Porque existen aspectos distintos a años anteriores, voy a enumerar solos dos para no extenderme y en honor a vuestro tiempo.

   a) Este será mi último período como moderador de la lista. No voy a postularme para 2015-2017 (muy pronto habrá un llamado de selección), y

   b) En mi opinión personal el despliegue de IPv6 este año ha sido significativo en la región de LAC.

 En base a lo anterior, puntualmente el item número 2 y tomando en cuenta  que finaliza el año 2014, es el mejor momento para utilizar la palabra "Retrospectiva", definida en Wikipedia [1] como: "..... es una enumeración y celebración de eventos ya ocurridos ....", vamos a comentar al respecto en nuestra region.

Les dejo mi humilde análisis sin ser estadista ni literato

1) El Caso Perú:
 Este caso específico se ha discutido mucho en la lista. Tanto así que conllevó a una de los más tormentosos intercambios de correos en los últimos años [2], [3] y [4].

 En este momento, al menos según datos de Google la penetración de tráfico IPv6 en el país es de 10%, siendo el único país de la region con doble dígito y uniéndose al grupo mundial de países con  penetración mayor al 10% junto a  Alemania (12.35), USA (10.95), Suiza (10.28) (espero no haber olvidado ningún otro).

 Como información adicional, desde Lacnic comenzamos el observatorio de tráfico IPv6 para los países de nuestra región en Mayo de este año, específicamente para Perú nuestras primeras mediciones daban en aquel entonces un grado de penetración de 4.6% y observando caídas hasta de 3.4%. Después del 18 de Junio apreciamos un crecimiento sostenido de tráfico IPv6 y superando como se mencionó anteriormente el 10%.

2) El Caso Ecuador

 Ecuador es un país con una rata relativamente baja de penetración de Internet en la población (35% para el 2012 según [6]) sin embargo con una infraestructura que ha mejorado notablemente en los últimos 2.5 años - según [7]-.  Por ello voy a trabajar en base a que Ecuador tiene una penetración de Internet de 40%

Para nuestro observatorio, Ecuador es el país con mayor velocidad de adopción de IPv6 en la región, en menos de 60 días pasaron de tener menos de 1% a más de 3.6%.

  Teniendo en cuenta que 40% de ~16.000.000 de la población tiene Internet quiere decir que pasaron de: 64.000 abonados a 229.000 entre Octubre y Diciembre.

3) El caso Brasil
 Para este caso en particular me hubiese gustado incluso llegar a estadísticas de dispositivos conectados, computadoras en el país pero me costo conseguir data actualizada (ubiqué hasta 2011), pero de igual manera quería indicar:

 Segun [5] Brasil tiene 202.000.000 de habitantes, donde 107,822,831 (2014) son usuarios de Internet lo que representa 53% de la población.

 En base que en este momento la tasa de penetración de IPv6 para este país indica 0.17% podemos asumir que hay 183.298 usuarios.

 Estoy seguro que muchos pensarán que es un número bajo, pero desde Mayo 2014 hasta mediados de agosto fue un número fijo de 0.03%, es decir apenas 60.000 usuarios, incrementaron más de 280.000 abonados en un lapso de 7 meses, ello se traduce a un incremento superior a 400 %.

 Finalmente, es perceptible que subir  el porcentaje en un país como Brasil es muy complicado por su gran cantidad de población. En cualquier otro país si colocamos 200.000 suscriptores ya hace bastante mella en los termómetros de IPv6.

4) El caso Bolivia


 Bolivia parece ser un evento MUY importante que esta ocurriendo sin pena ni gloria. No ha habido discusión en la lista y en lo personal no he escuchado mucho (¿nada?) en otros medios.

 Pero en definitiva se merecen un aplauso, nuestros respetos y nuestras felicitaciones.

 En estos momentos el país tienen ~0.70% de tráfico IPv6, habiendo comenzado su despliegue a mediados de año con mayor énfasis a finales de Agosto.

 Por ahora, el número global del país no lo vemos crecer significativamente porque al parecer es un proveedor pequeño (una cooperativa) quienes estan llevando a cabo el despliegue. De igual manera una vez más extiendo mis felicitaciones.

5) Promedio de LAC

 Dentro de las mediciones realizadas por Lacnic hemos calculado el promedio de los países de la región obteniendo un promedio para LAC alrededor del 0.5%.

 El punto el cual considero resaltante en LAC es que para mediados de Junio el porcentaje era: 0.12%..., quiere decir que en el lapso de seis meses se ha cuadruplicado la adopción de IPv6 en la región.

¿Qué esperar para el 2015?
 Indiscutiblemente deseamos ver un despliegue muy fuerte para el próximo año en la región de LAC. Recuerdo comenzando el 2014 pronostiqué 0.4% de tráfico al finalizar el año y afortunadamente me quedé corto (¡¡me alegra haberme equivocado!!).

 Mi predicción -y lo digo solo para dejarlo público-, pienso que en el 2015 vamos a llegar a 2.5% pero honestamente esta muy díficil decir algo certero, quizás más complicado que el pronóstico del tiempo y el fútbol juntos. Son muchas las organizaciones que sabemos que están implementado IPv6, universidades, gobiernos, ISPs, en todos los países y en todas las regiones. Lógicamente espero quedarme corto pero solo indicar 5 veces el número actual es bastante prometedor.

Una vez mas: ¿alguna killer application?
 Deseo mencionar algo muy llamativo que ocurrió en repetidas oportunidades este año y pienso que es un motivador gigante:

 Hubo muchas empresas en LAC que querían conectarse a empresas en Asia…, en LAC tenían IPv4 pero en Asia no, es decir, necesitaban IPv6, para comunicarse, esto trajo consigo que el ISP en nuestra región tuvo que correr e implementar IPv6 o perdía al cliente. Con lo anterior, recordemos que los países no estan solos, Internet no tiene fronteras, necesitan comunicarse con el resto del mundo. Los países que no implementen IPv6 corren el riesgo de quedarse incomunicados. Quizás ustedes aún tengan IPv4 pero el otro extremos no necesariamente tenga.

 Sin querer extenderme mucho más, mis mejores deseos en esta navidad, espero la pasen en familia y anhelo tengan tengan un 2015 espectacular.

Abrazos.

Alejandro Acosta,
Moderador LACTF
Chair FLIP6



 Todos los números arriba indicados fueron tomados de: IPv6 Google stats, Cisco IPv6 stats y APNIC IPv6 stats.

[1] http://es.wikipedia.org/wiki/Retrospectiva
[2] https://mail.lacnic.net/pipermail/lactf/2014-February/005333.html
[3] https://mail.lacnic.net/pipermail/lactf//2013-April/004805.html
[4] https://mail.lacnic.net/pipermail/lactf/2014-October/005513.html
[5] http://www.internetlivestats.com/internet-users/
[6] http://en.wikipedia.org/wiki/Telecommunications_in_Ecuador
[7] http://gringosabroad.com/ecuador/ecuador-internet-2013/
[8] http://data.worldbank.org/region/LAC

martes, 9 de diciembre de 2014

Python Script: Probably useless but functional IPv6 Network scanner

Below is the code of what is probably useless but a functional IPv6 host scanner written in Python using threading.

To perform a regular (brute force) network scans in an IPv6 Network is almost impossible and it can take over 5.000 years to finish.

This project was purely academic and I just wanted to learn about threading in Python.

This software is not recommended for general usage.....

This  script  will call the OS to actually perform the ping

This software receives two parameters:
a) Prefix to scan in the format 2001:db8::/64 (subnet, not host)
b) Number of simultaneous processes it can run (MAXPINGS)

One more time it was purely academic stuff but hopefully it can make your day

Finally, AFAIK nmap does not yet support IPv6 network scan.

The code was written in python3:

--- cut here ---

#!/usr/bin/python3

import threading
import sys
import ipaddress
import subprocess
import time

CURRENTPINGS=0 # Number of simultaneous ping at a time

def DOPING6(IPv6ADDRESS):
  global MAXPINGS, CURRENTPINGS
  CURRENTPINGS+=1
  CMD="ping6 -c 3 "+str(IPv6ADDRESS) + " 2> /dev/null > /dev/null"
  return_code = subprocess.call(CMD, shell=True)
  if return_code == 0:  #If ping was succesful
    print (IPv6ADDRESS," is alive")

  CURRENTPINGS-=1

def main():
  global MAXPINGS, CURRENTPINGS
  if len(sys.argv) != 3: #Validate how many parameters we are receiving
    print("  Not enough or too many parameter")
    print("  Usage: ./scanipv6.py IPv6Prefix/lenght MAXPINGS")
    print("  Example: ./scanipv6.py 2001:db8::/64 20")
    print("  Prefix lenght can be between 64-128")
    print("  MAXPINGS corresponds to how many pings will be running at the same time")
    exit()

  SUBNET,MASK=sys.argv[1].split("/")
  MAXPINGS=int(sys.argv[2])

  for addr in ipaddress.IPv6Network(sys.argv[1]):  #Let's loop for each address in the Block
    ping_thread=threading.Thread(target=DOPING6,args=(addr,))

    while CURRENTPINGS >= MAXPINGS: # With this while we make it possible to run max simultaneous pings
      time.sleep(1)  # Let's wait one second before proceeding
      #print ("Interrumping...., CURRENTPINGS > MAXPINGS") #Uncomment this line just for debugging

    ping_thread.start()

main()

Linux - Touchpad no funciona al primer arranque pero si al reiniciar

Situacion:
  El touchpad de la laptop no funciona la primera vez que arranca la laptop/computadora pero si al reiniciar la misma

Solucion:
  1. Edita el archivo /etc/default/grub (NO es grub.cfg)

  2. Ubica la siguiente linea:
  GRUB_CMDLINE_LINUX=" "

  3. Agrega lo siguiente entre "":
  i8042.nomux=1 locale=fr_FR i8042.reset

  4. La linea debe quedar asi:
  GRUB_CMDLINE_LINUX="i8042.nomux=1 locale=fr_FR i8042.reset"

  5. Graba el archivo y sal.

  6. En el terminar ejecuta:
  #sudo update-grub

  7. Listo, apaga y prende tu computadora.


Creditos a:
http://ubuntuforums.org/showthread.php?t=2217553

lunes, 17 de noviembre de 2014

$GENERATE usando registros A en BIND. Match forward y rDNS

Hola,
  Este post es muy corto pero quizas muy util. Hay menos documentacion en Internet que la esperada.

Objetivo:
  a) Configurar los DNS reversos y los DNS forward de una red /24 en BIND9 utilizando $GENERATE.
 b) Que coincida la resolucion forward a la resolucion reversa

Requisitos:
  - Una red /24 (claro, el ejemplo se puede ajustar a otras redes)
  - BIND9
  - Usaremos registros A y PTR

Ejemplo:
  La red 192.168.30.0/24
  Dominio:  ejemplo.com

  Vamos a hacer que los reversos de 192.168.30.X resuelvan a: X.cliente.ejemplo.com
  De igual manera, X.cliente.ejemplo.com resolverá a 192.168.30.X

  Sería así:
  192.168.30.1 ---> 1.cliente.ejemplo.com
  192.168.30.2 ---> 2.cliente.ejemplo.com
  192.168.30.3 ---> 3.cliente.ejemplo.com
  1.cliente.ejemplo.com ---> 192.168.30.1
  2.cliente.ejemplo.com ---> 192.168.30.2
  3.cliente.ejemplo.com ---> 192.168.30.3
  (etc)

Pasos:
   Creamos la zona reversa en /etc/bind/named.conf.

a) La zona reversa:

zone "30.168.192.in-addr.arpa" {
     type master;
     file "30.168.192.in-addr.arpa.db";
     allow-query { any; };
};


Luego en el archivo 30.168.192.in-addr.arpa.db  colocamos lo siguiente:

$TTL    86400 ; 24 hours, could have been written as 24h or 1d
@  1D  IN        SOA localhost.     hostmaster.ejemplo.com. (
                              2002022401 ; serial
                              3H ; refresh
                              15 ; retry
                              1w ; expire
                              3h ; minimum
                             )
; Name servers for the zone - both out-of-zone - no A RRs required
                        NS      localhost.

$GENERATE 1-255 $ PTR $.cliente.ejemplo.com.


b) La zona forward, utilizando registros A es:

$TTL    86400 ; 24 hours, could have been written as 24h or 1d
@  1D  IN        SOA localhost.     hostmaster.ejemplo.com. (
                              2002022401 ; serial
                              3H ; refresh
                              15 ; retry
                              1w ; expire
                              3h ; minimum
                             )
; Name servers for the zone - both out-of-zone - no A RRs required
                        NS      localhost.

$GENERATE 1-255.cliente.ejemplo.com $ A 192.168.30.$



Pruebas:
Para probar:
#dig -x 192.168.30.3  (reverso dns)
#dig 3.cliente.ejemplo.com  (forward dns)


Espero haya sido de utilidad
 

Una propuesta inesperada dentro de IETF – Ethernet sobre HTTPS

En el presente post quiero hablar mayormente sobre un documento con poco tiempo en IETF llamado “Ethernet sobre HTTPS”. Debo confesar que su...