noiafobia = No Inteligencia Artificial Fobia
o
noaifobia = No Artificial Intelligence Fobia
Blog en espanol destinado a diferentes temas tecnicos principalmente en IT y Networking. Se desea cubrir Linux, DNS, DNSSEC, RPKI, BGP, Cisco, Programacion (Bash, Python, etc), Protocolos de Enrutamiento, Seguridad en Redes, VoIP.
noiafobia = No Inteligencia Artificial Fobia
o
noaifobia = No Artificial Intelligence Fobia
Sobre la fugas de rutas
Una fuga de rutas (route leaks) se define como la propagación de un anuncio más allá del alcance previsto (RFC 7908). Pero, ¿por qué ocurren? Existen muchas razones tales como errores (alguien digita mal un número), desconocimiento, falta de filtros, ingeniería social, entre otras.
Si bien existen varias formas de prevenirlo y en los últimos 3 años la cantidad de fugas de rutas ha disminuido (gracias a RPKI, IRR y otros mecanismos), mi idea es explicarles lo que pienso va a ser en el futuro las configuraciones en BGP. Y para eso hablaremos del RFC 9234, cuyo título es Prevención de fuga de rutas y detección de roles utilizando mensajes UPDATE y OPEN. De este concepto me interesa destacar la “detección de roles”, ya que a partir de este RFC, en el futuro vamos a asignar roles en nuestra configuraciones BGP.
Para ir comprendiendo a qué queremos llegar recordemos algunos casos típicos en un ISP:
En todos esos casos es necesario tomar decisiones. Hay muchas maneras de configurar BPG: route maps, AS filters, prefix-lists, comunidades, ACLS, entre otros. Incluso puedo estar usando más de una de estas opciones.
Y aquí es donde aparece el RFC 9324: este documento define los roles dentro del mensaje Open. Se trata de un acuerdo al que van a llegar los dos enrutadores. Por ejemplo, si yo soy un enrutador y converso con otro, le digo que soy “cliente” y él en su sesión BGP puede decir “yo soy tu proveedor”. En base a eso todas las configuraciones (léase filtros) se harán de forma automática y, en consecuencia, esto debería disminuir los route leaks.
Estas capacidades entonces se negocian en el mensaje Open de BGP.
En el RFC se definen 5 roles:
Proveedor: el emisor es un proveedor de tránsito para el vecino;
Cliente: el emisor es un cliente de tránsito del vecino;
RS: el emisor es un servidor de rutas (route server), generalmente en un punto de intercambio de tráfico (IXP);
Cliente RS: el emisor es cliente de un RS;
Peer: el emisor y el vecino son peers.
¿Cómo se configuran los roles?
Si por ejemplo tengo un router con una sesión BGP contra alguien y de un lado está el provider, del otro lado tiene que estar customer, y viceversa. Si tengo un Route Server (RS) de un lado, del otro lado debo tener un cliente route server y viceversa; y peer contra peer (ver tabla)
A continuación, podemos ver un ejemplo
Capacidades BGP
Las capacidades BGP son lo que el enrutador anuncia a sus peers BGP para informarles qué características puede admitir y, si es posible, intentará negociar esa capacidad con sus vecinos. Un router BGP determina las capacidades admitidas por su peer examinando la lista de capacidades presentes en las capacidades transportadas por el mensaje OPEN. Podríamos compararlo con dos personas políglotas que se encuentran: uno habla inglés español y portugués, y el otro francés, chino e inglés. El idioma común en el que coinciden es el inglés, por lo que se comunicarán en ese idioma. Pero no lo harán en francés, ya que solo una de ellas lo habla. Eso es lo que básicamente ha permitido que BGP haya crecido tanto y el impacto en nuestras redes ha sido muy pequeño, porque tiene esos conceptos de compatibilidad hacia atrás (backward compatibility) que funcionan perfectamente.
Este RFC añadió una nueva capacidad
¿Funciona este código? Totalmente; aquí un ejemplo:
Modo estricto
En general las capacidades se negocian entre los BGP Speakers y se utilizan exclusivamente las que ambos soportan. Strict Mode es una opción que, en el caso que se configure, ambos enrutadores deberán soportar esta capacidad.
Conclusión
En conclusión, creo que la manera como el RFC 9234 hace las cosas será el futuro de la configuración BGP a nivel global, reemplazando y mejorando notablemente la fuga de rutas y anuncios indebidos en Internet. Facilitará las configuraciones en BGP, y será un complemento a RPKI e IRR en el tema de fugas de rutas, y en que las tablas de enrutamiento se encuentren más limpias.
Puedes ver la presentación completa en el marco de LACNIC 38 LACNOG 2022 aquí
El Metaverso promete ser uno de los desarrollos tecnológicos que mayor impacto traerá en el futuro las formas de uso y consumo en Internet[1].
Aunque por ahora la promesa de Mark Zuckerberg sigue siendo un poco gaseosa y el uso práctico en la actualidad se reduce a la comunidad de los denominados “GAMERS”, el desarrollo, masificación y despliegue del denominado “Metaverso” será posible gracias a la tecnología que soporta el protocolo IPv6[1].
En su casi medio siglo de vida los protocolos TCP/IP han servido para conectar a miles de millones de personas.
Desde la creación de Internet, han sido los estándares universales sobre los cuales se transmite la información por la red, haciendo posible que Internet funcione[3].
La sigla IP puede referirse a dos conceptos vinculados entre ellos; El primero es un protocolo (Internet Protocol – Protocolo de Internet en Español) y su principal función es el uso bidireccional (origen y destino) de transmisión de datos basado en la norma OSI (Open System Interconnection)[4].
La segunda posible referencia cuando se habla de IP, está vinculada a una asignación numérica de direcciones físicas conocida como Dirección IP, un identificativo lógico y jerárquico asignado a una interfaz de un dispositivo dentro de una red que utilice el protocolo de Internet (Internet Protocol – IP), la cual corresponde al nivel de red o nivel 3 del modelo de referencia OSI.
IPv4 hace referencia al Protocolo de Internet en su cuarta versión (en inglés, Internet Protocol version 4, IPv4), un estándar de interconexión de redes basados en Internet, y que fue implementado en 1983 para el funcionamiento de ARPANET y la posterior migración a Internet[5].
El IPv4 usa direcciones de 32 bits, equivalentes a 4.2 mil millones de bloques de numeración únicas, una cifra que, para la década de los años 80 parecía sencillamente inagotable, no obstante, y por el crecimiento enorme e inesperado de Internet, para el año 2011 pasó lo que nunca se creyó que fuera a ocurrir, todas las direcciones se agotaron[6].
Para solucionar la falta de direcciones disponibles, conocido como “RECURSOS”, los grupos de ingeniería responsables de Internet, han recurrido a múltiples soluciones que van desde la creación de subredes privadas, de tal forma que con una misma dirección se puedan conectar múltiples usuarios, hasta la creación de un nuevo protocolo denominado IPv6 que promete ser la solución definitiva del problema y el cual fue lanzado oficialmente el 6 de junio de 2012[7]:
“Previendo el agotamiento de la dirección disponibles en IPv4 y como una solución de largo plazo, el organismo que se encarga de la estandarización de los protocolos de Internet (IETF, Internet Engineering Task Force), diseñó una nueva versión del Protocolo de Internet, concretamente la versión 6 (IPv6), con una casi inagotable disponibilidad, a partir de una nueva longitud de 128 bits, es decir alrededor 340 sextillones de direcciones”[8].
Es importante aclarar que la creación del protocolo IPv6, no implica una migración, es decir un cambio de un protocolo a otro como si fuera un proceso de remplazo, sino que se diseñó un mecanismo que permite por un tiempo la coexistencia articulada de ambos protocolos.
Para garantizar una transición transparente para los usuarios y que garantice un tiempo prudencial para que los fabricantes incorporen la nueva tecnología y los proveedores de Internet la implementen en sus propias redes, la organización encargada de la estandarización de los protocolos de Internet (IETF, Internet Engineering Task Force), diseñó junto con el mismo protocolo IPV6, una serie de mecanismos que se denominan de transición y coexistencia.
“Es como una balanza, en la que hoy en día el lado con el mayor peso representa el tráfico IPv4, pero poco a poco, gracias a esta coexistencia, conforme más contenidos y servicios estén disponibles con IPv6, el peso de la báscula irá hacia el otro lado, hasta que IPv6 sea predominante. Esto es lo que llamamos la transición”[9].
El diseño del protocolo IPv6 da preferencia a IPv6 frente a IPv4, si ambos están disponibles (IPv4 e IPv6). De ahí que se produzca ese desplazamiento del peso en “nuestra balanza”, de una forma natural, en función de múltiples factores, y sin que podamos determinar durante cuánto tiempo seguirá existiendo IPv4 en la Red y en qué proporciones. Posiblemente podamos pensar, intentando mirar en la bola de cristal, que IPv6 llegará a ser predominante en 3-4 años, y en ese mismo entorno de tiempo, IPv4 desaparecerá de Internet, al menos en muchas partes de ella” [10].
Cómo lo analizamos en pasados artículos, los Metaversos o Metauniversos, son entornos donde los humanos interactúan social y económicamente como iconos, a través de un soporte lógico en un ciberespacio, como una metáfora amplificada del mundo real, pero sin las limitaciones físicas o económicas[11].
“Puedes pensar en el Metauniversos como una Internet encarnada.
En lugar de ver contenido, estás en él y te sientes presente con otras personas como si estuvieras en otros lugares teniendo diferentes experiencias que no podrías tener en una aplicación 2D o página web“. Mark Zuckerberg Ceo de Facebook[12].
El Metaverso necesariamente “corre” o se “Ejecuta” sobre Internet, que a su vez utiliza el IP o (Internet Protocol) para funcionar.
El Metaverso es un tipo de simulación que mediante “Avatares” permite a los usuarios tener conexiones mucho más inmersivas y realistas, desplegando un universo virtual que corre en línea, razón por la cual se hace necesario garantizar que el Metaverso sea Inmersivo, multisensorial, Interactivo, que corran en tiempo real, que permitan diferenciar de manera precisa a cada usuario, que despliegue herramientas gráficas simultáneas y complejas, entre muchos otros elementos, que simplemente sería imposible de garantizar sobre el Protocolo IPv4, puesto que ni existen suficientes “Recursos IP” para cada conexión, ni es posible garantizar que con tecnologías como el NAT pueda correr adecuadamente.
Los elementos claves:
El Rol de los Pequeños ISP
Teniendo en cuenta que los pequeños ISP son los grandes responsables de la conectividad de millones de personas en las regiones más apartadas de todo Latinoamérica y como lo hemos analizado anteriormente, son los grandes responsables de la disminución de la Brecha Digital[14], es muy importante que estos operadores aceleren el proceso de migración hacia IPV6, no solamente para ser más competitivos frente a sus grandes competidores, sino para que puedan garantizarle a sus usuarios que tecnologías como El Metaverso funcionarán en sus dispositivos sin mayores traumatismos tecnológicos.
En Conclusión, si bien aún es incierto el alcance real que tendrá El Metaverso, su despliegue, implementación y masificación será posible gracias al Protocolo IPv6, una tecnología que ha dado solución a la disponibilidad de los recursos IP, evitando el engorroso procedimiento de la traducción de NAT, mejorando los tiempos de respuesta, disminuyendo el RTT o Delay y evitando la perdida de muchos paquetes, al tiempo que facilitará la simultaneidad de usuarios.
Todo lo anterior nos permite afirmar que El Metaverso sin IPv6, no sería posible.
Descargo de Responsabilidades: Este artículo corresponde a una revisión y análisis en el contexto de la transformación digital en la sociedad de la información, y está debidamente soportado en fuentes académicas y/o periodísticas confiables y verificadas, las cuales han sido demarcadas y publicadas.
La información que contienen este artículo periodístico y de opinión, no necesariamente representa la postura de Andinalink, o las entidades con las que desarrolla sus relaciones comerciales.
noiafobia = No Inteligencia Artificial Fobia o noaifobia = No Artificial Intelligence Fobia