VPSs y mas.

Mostrando entradas con la etiqueta ancho de banda. Mostrar todas las entradas
Mostrando entradas con la etiqueta ancho de banda. Mostrar todas las entradas

domingo, 1 de enero de 2017

Como la navidad puede dañar una red (experiencia real, BTW adoro la navidad)

Hola,
  En este oportunidad voy a contar una experiencia que tuve unos años atrás. Creo que esta vivencia me vino a la cabeza luego de enterarme del Arbol de Navidad controlado por IPv6 [1]

Introducción:
  Alrededor del año 2011 estuve trabajando en una oficina donde ese mismo año se había instalado una red LAN la cual mediante un pequeño enlace DSL llegaba al core de la red de la organización y además se conectaba a Internet.

Sobre el comportamiento general de la red
  Transcurrían los meses desde Junio a Diciembre y la red funcionaba perfectamente, los usuarios satisfechos con el rendimiento, velocidad, aplicaciones entre otros.

Sobre la topología:
  La oficina (ramal) se conectaba mediante un enlace DSL propio (utilizando los mismos pares de cobre de unas lineas telefónicas del edificio), los modems DSL tenían un puerto UTP el cual conectábamos a un LAN Switch Cisco moderno. Como comentario adicional, también manejábamos algunas VLANs para algunos servicios (VoIP).
  La oficina contaba con una cámara de seguridad HD la cual transmitía a un servidor central ubicado en el core de la red (no en la misma oficina).

_______       __________       __________
|Oficina | ---- Enlace DSL   | ---- | Core Office   |
|_____|       |_________ |      |__________|




La llegada de la navidad
  Al igual que en la mayoría de las oficinas y hogares, en la oficina se decidió colocar su respectivo árbol de navidad en la entrada, justo en la puerta principal.
  El árbol fue adornado con sus respectivos ornamentos navideños tales como: bambalinas, micro arbolitos, casitas, cascanueces, estrellas y por supuesto sus luces a lo largo del árbol que titilaban constantemente.


¿Qué ocurrió y como la navidad "dañó" la red?
  Las cámaras mencionabas anteriormente se encontraban apuntando hacia la entrada de la oficina y al igual que muchas otras cámaras y sistemas de CCTV solo transmitían los cambios de la imagen (o lo que es mismo cuando había algún movimiento) al servidor central, es decir, si no habían cambios de pixels en donde apuntaba la cámara, el consumo de ancho de banda era mínimo o casi nulo. Favor recordar que el receptor de la imagen era un servidor central ubicado al otro extremo del enlace DSL y no propiamente en la oficina donde se instaló el árbol.

Para finalizar:
  Entendiendo que un enlace DSL no es de muy alta velocidad y las cámaras son HD el problema puntualmente fue que colocaron el árbol de navidad con sus luces intermitentes junto a la entrada de la oficina, por ende la cámara alcanzaba el mismo haciendo que tuviese que transmitir constantemente al servidor central los cambios de la imagen, es decir, cualquier movimiento en el árbol tal como las luces intermitentes!.

Saludos,

[1] http://ipv6tree.bitnet.be/
[2] Imagen tomada de: http://www.publicdomainpictures.net/pictures/60000/velka/christmas-tree-by-the-fire-place.jpg




lunes, 8 de agosto de 2016

Mas allá del Cobre

Introducción

Se podría pensar que las redes de cobre para proveer servicios de telecomunicaciones están en decrecimiento o que tiene sus días contados, sin embargo, el cobre sigue siendo una de las piezas fundamentales para que los países en desarrollo (y muchos otros) accedan a los distintos servicios de Internet y por consiguiente a sus incontables beneficios.

Habiendo escrito el párrafo anterior, el presente Post desea expresar nuestro pensar en cuanto a las redes “viejas” y existentes de cobre en un mundo cambiante de telecomunicaciones donde la velocidad de la fibra óptica y las redes inalámbricas están tomando un terreno indiscutible.

Un poco de historia sobre las redes de Cobre

El uso del cobre en redes de telecomunicaciones empezó en el último tercio del siglo XIX. Durante este siglo se investigó el uso de medios de transmisión de formas simples, de hierro, cobre, etc.

Su historia se encuentra atada a las telecomunicaciones remontándose a la invención del teléfono por Alexander Graham Bell quien patenta en 1881 el par de cobre trenzado y 3 años después se realiza la primera llamada de larga distancia entre Boston y Nueva York.

Las propiedades físicas del cobre, junto a otros metales tales como el Aluminio, Plata, Oro, etc, los hacen buenos conductores de electricidad. Sus átomos se unen formando enlaces metálicos que le dan un estructura más estrecha y estable al metal en sí. Esos átomos liberados forman una nube de electrones, la cual conduce la electricidad con suma facilidad y al aplicar un campo eléctrico, los electrones comienzan a fluir desde un extremo del metal a otro libremente.

Por generaciones, las redes tradicionales de telecomunicaciones y en especial las redes de voz, utilizaron pares de cobre para la explotación de los diversos servicios disponibles en ese entonces.  Desde el telégrafo, los primeros cables submarinos, el telex y las redes de voz, las empresas de telecomunicaciones hicieron cuantiosas inversiones para llegar a los clientes a través del cobre.

Con la evolución de las telecomunicaciones y la llegada del Internet, las redes de telecomunicaciones se actualizaron, llegando a digitalizar la mayoría de sus principales elementos de red. Sin embargo, ¿qué hacer con los pares de cobre que se instalaron por años en la red de planta externa y en el bucle de abonado?.

Estaba claro que reemplazar todo ese cobre, representaría altas inversiones y tomaría muchos años.  La mayoría de estas instalaciones de cobre aún no retornaban su inversión, por lo que la tecnología evolucionó para permitir transmitir formas diferentes de datos en conjunto con la voz, transportándose por pares trenzados de cobre entre los proveedores de servicios de red o compañías telefónicas.

Ahora bien, vamos a adentrarnos en lo que se conoce como: Bucle del Abonado, que como sabemos es la parte que se extiende desde la central telefónica hasta el usuario. Esta conexión es tradicionalmente un par trenzado de cobre y donde el operador puede transportar diferentes tecnologías como: Voz, ISDN, XDSL a través de sus varios sabores: ADSL, HDSL, SDSL y VDSL.

La primera especificación sobre la tecnología xDSL data de 1987 y fue definida por “Bell Comunications Research”, la misma compañía precursora de la tecnología RDSI (Red Digital de Servicios Integrados). En ese momento la aplicación de la tecnología xDSL estaba dirigida a suministrar vídeo bajo demanda y aplicaciones de televisión interactiva sobre el par de cobre.

El gran avance de los servicios de alta velocidad xDSL, está en el soporte de banda ancha sobre las líneas de cobre telefónicas ordinarias instaladas previamente a lo largo de los años.  Sus velocidades de transmisión varían entre 128 Kbps y 8 Mbps dependiendo del tipo de servicio xDSL y la calidad de línea telefónica que se tenga (si, ciertamente las velocidad pueden ser aún mayor y también depende de la distancia entre el abonado y la central).

Un poco de historia sobre las redes de Fibra

Respecto a la historia de la fibra óptica podemos retroceder hasta el siglo XIIX donde se lograban transmisiones de datos utilizando la luz solar y espejos. Pero ciertamente lo anterior no podía llamarse fibra óptica.

Sin embargo, el verdadero estudio sobre este tema comenzó en los años 50’ pasando por grandes cambios y por diferentes dificultades que hubo que superar tales como utilizar la luz para la transmisión en vez de electricidad, materiales utilizados para la fibra, atenuaciones x Km y otros detalles.

La primera transmisión telefónica a través de fibra óptica, en 6 Mbit/s se hizo en 1977 por General Telephone and Electronics en Long Beach, California.

En la actualidad, un fibra óptica está compuesta de un hilo o varios hilos, muy finos de material transparente, vidrio o materiales plásticos. A través de estas hebras de hilos se transmiten pulsaciones de luz que transportan información de datos a velocidades muy altas. El haz de luz queda completamente confinado y se propaga por el interior de la fibra utilizando, por lo general fuentes de luz láser.
La luz producida por un láser consiste de fotones del mismo tamaño, movimiento y dirección, siendo entonces el rayo de luz de alto poder distintivo espectral, con características bien definidas.

¿Qué tiene la Fibra que no tenga el Cobre?
Los enlaces de Fibra tienen una gran cantidad de ventajas que no se dan en otros medios. Vamos a nombrar específicamente un comparativo con el cobre.

1) Mayor ancho de banda:
A pesar de que constantemente se logra mayor capacidad de transmisión de datos sobre par de Cobre, el ancho de banda soportado por la fibra óptica sigue siendo muy superior; se han reportado decenas de Terabits por segundo. Es normal que los conocidos de fibra óptica digan que la limitante está en la electrónica y no en el propia Fibra Óptica.

2) Distancia:
El cobre es conocido por su limitante de 100 metros de alcance (si, ciertamente pueden haber otros factores y mitigaciones a esto). La fibra monomodo pueden superar los 40 Kilómetros sin inconvenientes.

3) Inmunidad y confianza:
La fibra óptica es inmune a una gran cantidad de factores que pueden afectar a los enlaces basados en cobre como lo pueden ser: interferencias electromagnéticas, radio frecuencia, impedancia, crosstalk, temperatura y otros

4) Costo:
Este es un tema que puede tener muchas aristas y todas ellas alcanza para escribir un libro, solo vamos a resumir el tema de los costos en que el precio de la fibra óptica ha caído significativamente en los últimos años.


Fibra óptica: ¿sinónimo de Banda Ancha?

Para entrar en este importante tema deseamos rescatar las palabras de Raúl Echeberría (ex-director y fundador de LACNIC) que en año 2012 dijo: “Un país sin plan de Banda Ancha está en problemas”.

Banda Ancha es un concepto difícil de explicar, pero en líneas generales se refiere a la capacidad que tiene un enlace de transportar gran cantidad de información. Es un término que cambia con el pasar de los años debido a que Banda Ancha no significaba lo mismo en el 2000, 2010 ni 2016 debido a la evolución natural de las redes y demanda de los usuarios.

Hoy en día es normal que muchos ISPs de varios países entreguen anchos de banda a empresas y usuarios finales de 50, 100 y 500 Mbps, incluso más en ciertas oportunidades. Sin embargo, en algunas situaciones realizar lo anterior no es posible y mucho menos cuando el ancho de banda exigido por el suscriptor es simétrico, lamentablemente esto es una situación negativa que afecta al cliente, a su productividad y por ende al mismo país, sobre todo cuando existe un efecto multiplicador por miles de abonados.

Viendo el escenario descrito en el párrafo anterior podemos apreciar que es virtualmente imposible implementar redes basada en cobre para realizar entrega de enlaces de banda ancha en redes masivas, la solución natural son redes de fibra óptica que abarquen la mayor cantidad de kilómetros cuadrados posible a lo largo y ancho de los territorios nacionales.

Finalmente, es importante tomar en cuenta la importancia de los anchos de banda simétrico porque la arquitectura de la red cambia, así como la necesidad misma de los usuarios. Aplicaciones peer to peer, Dropbox, Google Drive, video conferencia entre otras han exigido a los usuarios no solo pedir información a la red, sino también entregar datos a la misma. El mundo de los enlaces ADSL debería desaparecer con el transcurrir del tiempo.

¿Qué tienen las redes inalámbricas que no tenga el Cobre?
Sin ánimos de analizar la teoría electromagnética y tratar de explicarla a través de las ecuaciones de Maxwell, la simplicidad práctica de la propagación de ondas, nos lleva a responder esta pregunta de manera relativamente sencilla.

La enorme ventaja de las redes inalámbricas (en todos sus sabores: 802.11, satélite, microondas, Wimax, celular, etc) es la posibilidad de conectar sin mayores inconvenientes inherentes al despliegue de redes físicas de planta externa, con apoyo de antenas, repetidoras, receptores se pueden crear enlaces punto a punto y punto multipunto.

Probablemente el lector en este momento piense: ¿Por qué no hago todo con enlaces inalámbricos?

Como todo en la vida, la perfección no existe y en este caso tiene un costo. Aquí un breve resumen por tecnología:

Wifi 802.11:  Espectro libre, propenso a interferencia
Satélite: Costoso, altos delay, anchos de banda bajos
Wimax:  Cobertura e interferencia
Celular: bateria, aun con anchos de banda limitados
Microonda: Ancho de banda limitados, licenciamentos de banda

Otra limitante que es mínimo común denominador de todas las anteriores es que los enlaces inalámbricos son más propensos a pérdidas de paquetes lo que ocasiona que el aprovechamiento del ancho de banda es las redes sea mermado exponencialmente, sobre todo debido al conocido comportamiento de TCP quién disminuye su tamaño de ventana al no recibir un acuse de recibo.

De igual manera, hay que tener en cuenta que el espectro radioeléctrico es un recurso de los Estados y como tal, existen altos pagos por el uso de las bandas de explotación. Aunque existen algunas bandas que no requieren licencias, la mayoría de los segmentos de espectro para el uso de redes de banda ancha móviles exigen pagos de millones de dólares y la consecución de licencias, concesiones o permisos de uso exclusivo a ciertos proveedores de redes.

¿De verdad se necesita velocidad?

Vamos a responder a esta pregunta de una manera muy clara: Absolutamente

Hoy en día la necesidad de ancho de banda simétrico en los usuarios es inminente. Aquellos años donde el usuario “pedía” más datos a la red han quedado atrás.

La velocidad en el usuario es cada vez más importante, actualmente es muy común que los usuarios tengan llamadas, conferencias, teleconferencias, videoconferencias y mucho más en sus equipos. Por otro lado, la misma tecnología del software en el usuario a avanzado de tal manera que es necesario compartir archivos de muy gran tamaño (Gigabytes) con colegas, familia y amigos, por ello es importante ancho de banda de subida y bajada, tanto para el que sube los datos como para que el desea acceder a la misma.

Vamos a mencionar un ejemplo muy sencillo: Un educador realiza un video para enseñar a los niños a leer, hasta allí todo bien. Luego, el mismo educador desea colocarlo en línea para que sea visto por sus alumnos tantas veces como desean. El video ocupa 2 Gigabytes en su disco duro.

¿Cuánto tiempo (aprox) duraría en colocarlo en línea?. 

Vel      hrs:min

9.6 Kbps   509:15
14.4 Kbps  339:30
28.8 Kbps  169:45
33.6 Kbps  145:30
56 Kbps     87:18
64 Kbps     76:23
128 Kbps    38:11
256 Kbps    19:05
512 Kbps    09:32
1.024 Mbps  04:46
1.544 Mbps  03:09
2.048 Mbps  02:23
10 Mbps     00:29

Lógicamente los tiempos de arriba indicados son si nada falla y que más nadie utilice la red con todo el ancho de banda dedicado 100% a la aplicación que está subiendo el video. En la realidad es casi imposible que usuarios con enlaces de poca velocidad de subida podrán subir dicho video. Este comportamiento hay que llevarlos a otros ámbitos como medicina, salud, trabajo, academia, entretenimiento y más.
FTTx, el camino lógico a seguir
FTTx (del inglés Fiber to the x) es un término genérico para designar cualquier acceso de Banda Ancha sobre fibra óptica que sustituya total o parcialmente el cobre del bucle de abonado.

En base a todo lo mencionado anteriormente desde nuestra perspectiva las diferentes tecnologías de fibra deben incentivarse en todos los países; en un mundo ideal debería haber varios proveedores de fibra óptica, en todas las ciudades, en todas sus calles y conectando todo un país y a su vez realizando conexiones inter-ciudades.  

También combinaciones de fibra e inalámbrica en algunos sitios. Claro está que las redes de cobres quedarán por muchos años, es muy lógico que existe un dinero que recuperar, sin embargo también hay mucho dinero que perder cuando el país que no cuente con tecnologías FFTx queda en desventaja con el resto.

¿Qué puede hacer un regulador de telecomunicaciones?

Los países que no tengan proveedores FTTx quedarán rezagados en el tiempo y perderán mucha competitividad, no solo en telecomunicaciones sino en toda la industria en general por la enorme relación en diferentes rubros del mercado y la misma globalización.

En base a lo anterior consideramos que es muy sano crear incentivos para fomentar redes de fibra óptica en los países, que cubran todo el backbone y a su vez llegando al abonado final.

¿Cuáles incentivos pueden ser?:

- Facilidad en conseguir habilitaciones de telecomunicaciones
- Apoyo en la solicitud de permisos para tender fibra
- Exoneración de aranceles en importación en este rubro
- Reducción en el pago impuestos sobre servicios FTTx
- Apoyar nuevos competidores de Telco con esta tecnología
- Compartir algunos segmentos de fibra entre diferentes proveedores
- Incentivar el desarrollo de nuevos servicios, basados en el uso de las redes de fibra (contenido, clouding, etc.)


Para finalizar este articulo.., no podemos dejar de mencionar: Acompañemos la fibra óptica junto a la implementación de IPv6 !!

Referencias:
8 ADVANTAGES OF CHOOSING FIBER OVER COPPER CABLE
http://blog.blackbox.com/technology/2015/04/8-advantages-to-choosing-fiber-over-copper-cable/

Bucle Local
https://es.wikipedia.org/wiki/Bucle_local

Historia de la línea telefónica de cobre
https://techzine.alcatel-lucent.com/es/historia-de-la-linea-telefonica-de-cobre

Fibra óptica
https://es.wikipedia.org/wiki/Fibra_%C3%B3ptica

Que nos dejó Caribe 4
http://prensa.lacnic.net/news/edition/17a-edicion

Por:
Alejandro Acosta @ITandNetworking
Cesar Díaz @CesarDz26

sábado, 6 de marzo de 2010

Como medir el ancho de banda de un enlace

Introduccion:
En repetidas oportunidades nos vemos en la necesidad de medir el ancho de banda de algun enlace, ya sea el mismo una red LAN, WAN, MAN utilizando satelite, microondas, fibra, etc y no sabemos como.
Para los conocedores del area tambien es comun que la gente de transmision nos indiquen que el enlace a nivel de capa 2 esta perfecto que no hay errores ni perdidas y que las pruebas de BERT salieron sin errores. Sin embargo al momento de probar dicho enlace con un router y transportando IP nos vemos con inconvenientes. Ahora bien, algo que es muy cierto es que el cliente tiene la ultima palabra, si el cliente dice que ve errores y/o que la aplicacion no funciona hay que revisar.


Objetivo
:
Vamos a medir el ancho de banda y calidad de un enlace. Cuando me refiero a enlace puede ser la comunicacion en un enlace WAN, entre dos equipos en una misma LAN. Para estas pruebas el medio fisico (wireless, satelite, fibra, microondas) es irrelevante.

Software necesario:
Linux y/o Windows
Iperf

Como hacer el estudio:
Vamos a basar nuestro estudio en el programa Iperf. Wikipedia en su pagina en Ingles define Iperf como un programa moderno para probar redes que es capaz de crear stream TCP y UDP y mide el ancho de banda de la red donde se ejecutan. Iperf fue realizado en C++
Iperf es un programa cliente - servidor por ello es necesario instalar el programa en al menos dos dispositivos. El mismo programa funciona tanto cliente como servidor. Su comportamiento varia segun las opciones que utilicemos al momento de ejecutarlo.
Una ventaja de Iperf es que hacemos la prueba en capa 3, es decir en IP, con Iperf podemos probar TCP y UDP y con distintos programas de paquete. Esto es sensacional.

Procedimiento:
Es necesario dos equipos donde uno es cliente y el otro sera el servidor. Por default Iperf mide el ancho de banda desde el cliente al servidor (sin embargo existe una opcion de medicion bi-direccional)

Ejemplos utiles:

1) Prueba mas basica. Opciones por default.
Lado server:

[root@monitor-2 root]# iperf -s
------------------------------------------------------------
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
------------------------------------------------------------

Lado cliente:

[root@pemon ~]# iperf -c 10.1.1.1
------------------------------------------------------------
Client connecting to 10.1.1.1, TCP port 5001
TCP window size: 16.0 KByte (default)
------------------------------------------------------------
[ 3] local 10.1.1.2 port 51096 connected with 10.1.1.2 port 5001
[ 3] 0.0-10.0 sec 84.4 MBytes 70.8 Mbits/sec

2) Vamos a probar un Megabit entre el cliente y el servidor durante 15 segundo en paquetes UDP.
Lado server:
iperf -s -u

Lado cliente
[root@pemon ~]# iperf -c 10.1.1.1. -t 15 -u

3) Realizar una prueba de 2 Megabits de envio simultaneo entre el cliente y el servidor de paquetes UDP por 15 segundos
Lado server:
iperf -s -u

Lado cliente
[root@pemon ~]# iperf -c 10.1.1.1 -t 15 -u -d -b 2000000

{SUPRIMI UN POCO DE LA SALIDA}
[ ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[ 4] 0.0-15.0 sec 3.58 MBytes 2.00 Mbits/sec 0.180 ms 0/ 2553 (0%)
[ 3] 0.0-15.0 sec 3.58 MBytes 2.00 Mbits/sec 0.011 ms 0/ 2553 (0%)

Vamos a estudiar rapidamente el comando del cliente:
* con el -t 15 le indicamos 15 segundos
* -u que fuese UDP
* -d que fuese dual (envio y recepcion a la misma vez)
* -b 2000000 = 2 Mbits

Vamos a estudiar la salida tambien:
El intervalo fueron 15 segundos, se transfirio 3.58 Megabytes, el ancho de banda son 2 Mbits, el jitter es de 0.180 ms, se perdieron 0 datagramas de 2553 datagramas lo que representa 0 % de perdida

Recomendaciones:
Personalmente me agrada hacer mis estudios con Iperf utilizando UDP por diversas razones:
- Puedo indicar el ancho de banda
- No tengo inconvenientes con el Windows Size y/o perdida de algun acknowledge me baje drasticamente el Ancho de Banda
- Con la prueba de UDP yo mismo puedo calcular el impacto de las perdida de paquetes (imaginen la diferencia de perdida de paquetes (o errados) entre una red Wireless y una red cableada..

Salida del comado iperf --help para su referencia:

[root@monitor-2 root]# iperf --help
Usage: iperf [-s|-c host] [options]
iperf [-h|--help] [-v|--version]

Client/Server:
-f, --format [kmKM] format to report: Kbits, Mbits, KBytes, MBytes
-i, --interval # seconds between periodic bandwidth reports
-l, --len #[KM] length of buffer to read or write (default 8 KB)
-m, --print_mss print TCP maximum segment size (MTU - TCP/IP header)
-p, --port # server port to listen on/connect to
-u, --udp use UDP rather than TCP
-w, --window #[KM] TCP window size (socket buffer size)
-B, --bind bind to , an interface or multicast address
-C, --compatibility for use with older versions does not sent extra msgs
-M, --mss # set TCP maximum segment size (MTU - 40 bytes)
-N, --nodelay set TCP no delay, disabling Nagle's Algorithm
-V, --IPv6Version Set the domain to IPv6

Server specific:
-s, --server run in server mode
-D, --daemon run the server as a daemon

Client specific:
-b, --bandwidth #[KM] for UDP, bandwidth to send at in bits/sec
(default 1 Mbit/sec, implies -u)
-c, --client run in client mode, connecting to
-d, --dualtest Do a bidirectional test simultaneously
-n, --num #[KM] number of bytes to transmit (instead of -t)
-r, --tradeoff Do a bidirectional test individually
-t, --time # time in seconds to transmit for (default 10 secs)
-F, --fileinput input the data to be transmitted from a file
-I, --stdin input the data to be transmitted from stdin
-L, --listenport # port to recieve bidirectional tests back on
-P, --parallel # number of parallel client threads to run
-T, --ttl # time-to-live, for multicast (default 1)

Miscellaneous:
-h, --help print this message and quit
-v, --version print version information and quit

[KM] Indicates options that support a K or M suffix for kilo- or mega-

The TCP window size option can be set by the environment variable
TCP_WINDOW_SIZE. Most other options can be set by an environment variable
IPERF_, such as IPERF_BANDWIDTH.

Report bugs to


Links utiles:
http://www.noc.ucf.edu/Tools/Iperf/
http://sourceforge.net/projects/iperf/
http://en.wikipedia.org/wiki/Iperf

sábado, 2 de enero de 2010

Como determinar/calcular el ancho de banda para un enlace

Pregunta:
En mi area (mas de 15 anos trabajando en el mundo de proveedores de Internet) en repetidas ocasiones he recibido la pregunta por parte de clientes que quieren contratar un enlace a Internet: ¿Cuanto ancho de banda contrato?

Respuesta:
  La respuesta afortunadamente tiene calculos sencillos matematicos que se pueden utilizar, sin embargo no existe una sola respuesta a la pregunta.
  En fin, supongamos que usted quiere conectar una nueva oficina a Internet para N cantidad de usuarios y no sabe cuanto ancho de banda desea contratar. Esta es la formula a utilizar:

AB = G * C

Donde:

AB = Ancho de banda a contratar
N = Cantidad de usuarios que utilizan Internet en la Oficina. Recordemos que quizas tengan usuarios en la oficina que no utilicen Internet (motorizados, archivistas, etc). Este valor no esta en la formula pero es conveniente conocerlo
G = Ancho de banda a garantizar por usuario. Este valor es muy importante. Al bajar un archivo cuanto ancho de banda quiero que consuma. Un valor en latinoamerica puede ser quizas 256 Kbps, otros paises desarrollados pueden utilizar un valor mayor. Importante destacar que el valor G también puede depender del tipo de aplicativo que queramos usar. Por ejemplo una transmisión de video no es igual a una transacción POS de una tienda.
C = Concurriencia de las personas (cantidad de personas que utilizan Internet simultaneamente). Esto varia mucho entre las oficinas, no todas las oficinas utilizan Internet para lo mismo. No es lo mismo una compania que utiliza los servidores via VPN de otra sede que una que solo usa Internet para Internet-Banking. Probablemente podemos estimar 30% de N

En fin, hagamos un pequeno ejemplo:

N=50 (usuarios con Internet disponible en la oficina)
G=256 Kbps (ancho de banda "garantizado" por usuario)
C = 20 personas (Estimamos que 20 personas de la oficina estaran conectado simultaneamente a Internet)

AB = G * C
AB = 20 * 256 Kbps = 5120 Kbps.

Es decir, 5 Mbps a Internet para una compania de 50 empleados donde se estiman que navegan 20 personas simultaneamente.

Espero este articulo haya sido de tu ayuda.

Suerte,